2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-30.3
Paper Title DEEP COLOR CONSTANCY USING TEMPORAL GRADIENT UNDER AC LIGHT SOURCES
Authors Jeong-Won Ha, Jun-Sang Yoo, Jong-Ok Kim, Korea University, South Korea
SessionIVMSP-30: Inverse Problems in Image & Video Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract With the invention of electric bulbs, human has been living under various illuminant environments. Since the alternative current (AC) power is used for supplier of electric bulbs, intensity difference between consecutive video frames can be captured with high-speed camera. While most of conventional methods focus on only spatial information of a single image, we propose a deep spatio-temporal color constancy method. To exploit the temporal feature from high-speed video, maximum gradient map is fed into the proposed network. It can easily identify image regions which are significantly illuminated by light bulbs and be a useful information for estimating the illuminant. The experimental results demonstrate that using temporal features leads to better performance of illuminant estimation rather than conventional spatial methods.