2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-14.3
Paper Title Dynamic Sparsity Neural Networks for Automatic Speech Recognition
Authors Zhaofeng Wu, University of Washington, United States; Ding Zhao, Qiao Liang, Jiahui Yu, Anmol Gulati, Ruoming Pang, Google, United States
SessionSPE-14: Speech Recognition 6: New Algorithms for Sparsity/Efficiency
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In automatic speech recognition (ASR), model pruning is a widely adopted technique that reduces model size and latency to deploy neural network models on edge devices with resource constraints. However, multiple models with different sparsity levels usually need to be separately trained and deployed to heterogeneous target hardware with different resource specifications and for applications that have various latency requirements. In this paper, we present Dynamic Sparsity Neural Networks (DSNN) that, once trained, can instantly switch to any predefined sparsity configuration at run-time. We demonstrate the effectiveness and flexibility of DSNN using experiments on internal production datasets with Google Voice Search data, and show that the performance of a DSNN model is on par with that of individually trained single sparsity networks. Our trained DSNN model, therefore, can greatly ease the training process and simplify deployment in diverse scenarios with resource constraints.