2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCI-2.1
Paper Title Stochastic Deep Unfolding for Imaging Inverse Problems
Authors Jiaming Liu, Yu Sun, Weijie Gan, Xiaojian Xu, Washington University in St. Louis, United States; Brendt Wohlberg, Los Alamos National Laboratory, United States; Ulugbek Kamilov, Washington University in St. Louis, United States
SessionCI-2: Computational Imaging for Inverse Problems
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Computational Imaging: [CIF] Computational Image Formation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Deep unfolding networks are rapidly gaining attention for solving imaging inverse problems. However, the computational and memory complexity of existing deep unfolding networks scales with the size of the full measurement set, limiting their applicability to certain large-scale imaging inverse problems. We propose SCRED-Net as a novel methodology that introduces a stochastic approximation to the unfolded regularization by denoising (RED) algorithm. Our method uses only a subset of measurements within each cascade block, making it scalable to a large number of measurements for efficient end-to-end training. We present numerical results showing the effectiveness of SCRED-Net on intensity diffraction tomography (IDT) and sparse-view computed tomography (CT). Our results show that SCRED-Net matches the performance of a batch deep unfolding network at a fraction of training and operational complexity.