2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-13.1
Paper Title Fast and Provable Robust PCA via Normalized Coherence Pursuit
Authors Mostafa Rahmani, Amazon, United States; Ping Li, Baidu USA, United States
SessionSPTM-13: Models, Methods and Algorithms 1
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The idea of Innovation Search, initially proposed for data clustering, was recently used for outlier detection where the directions of innovation were utilized to measure the innovation of the data points. We study the Innovation Values computed by the Innovation Search algorithm under a quadratic cost function and it is proved that Innovation Values with the new cost function are equivalent to Leverage Scores. This interesting connection is utilized to establish several theoretical guarantees for a Leverage Score based robust PCA method and to design a new robust PCA method. Numerical and theoretical studies indicate that while the presented approach is fast and closed-form, it outperforms most existing algorithms.