2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMMSP-4.5
Paper Title IMAGE CODING WITH NEURAL NETWORK-BASED COLORIZATION
Authors Diogo Lopes, João Ascenso, Catarina Brites, Fernando Pereira, Instituto Superior Técnico, Universidade de Lisboa - Instituto de Telecomunicações, Portugal
SessionMMSP-4: Image, Video and Point Cloud Coding
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Multimedia Signal Processing: Signal Processing for Multimedia Applications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Automatic colorization is a process with the objective of inferring the color of grayscale images. This process is frequently used for artistic purposes and to restore the color in old or damaged images. Motivated by the excellent results obtained with deep learning-based solutions in the area of automatic colorization, this paper proposes an image coding solution integrating a deep learning-based colorization process to estimate the chrominance components based on the decoded luminance which is regularly encoded with a conventional image coding standard. In this case, the chrominance components are not coded and transmitted as usual, notably after some subsampling, as only some color hints, i.e. chrominance values for specific pixel locations, may be sent to the decoder to help it creating more accurate colorizations. To boost the colorization and final compression performance, intelligent ways to select the color hints are proposed. Experimental results show performance improvements with the increased level of intelligence in the color hints extraction process and a good subjective quality of the final decoded (and colorized) images.