2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIFS-6.2
Paper Title PRIVACY-ACCURACY TRADE-OFF OF INFERENCE AS SERVICE
Authors Yulu Jin, Lifeng Lai, University of California, Davis, United States
SessionIFS-6: Anonymization, Security and Privacy
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Information Forensics and Security: [ADP] Anonymization And Data Privacy
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we propose a general framework to provide a desirable trade-off between inference accuracy and privacy protection in the inference as service scenario. Instead of sending data directly to the server, the user will preprocess the data through a privacy-preserving mapping, which will increase privacy protection but reduce inference accuracy. To properly address the trade-off between privacy protection and inference accuracy, we formulate an optimization problem to find the optimal privacy-preserving mapping. Even though the problem is non-convex in general, we characterize nice structures of the problem and develop an iterative algorithm to find the desired privacy-preserving mapping.