2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-24.2
Paper Title TEACHER-STUDENT LEARNING FOR LOW-LATENCY ONLINE SPEECH ENHANCEMENT USING WAVE-U-NET
Authors Sotaro Nakaoka, Li Li, Shota Inoue, Shoji Makino, University of Tsukuba, Japan
SessionAUD-24: Signal Enhancement and Restoration 1: Deep Learning
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEN] Signal Enhancement and Restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper proposes a low-latency online extension of wave- U-net for single-channel speech enhancement, which utilizes teacher-student learning to reduce the system latency while keeping high enhancement performance. Wave-U-net is a recently proposed end-to-end source separation method, which achieved remarkable performance in singing voice separation and speech enhancement tasks. Since the enhancement is performed in the time domain, wave-U-net can efficiently model phase information and address the domain transformation limitation, where the time-frequency domain is normally adopted. Intending to apply wave-U-net to face-to-face applications such as hearing aids and in-car communication systems, where a strictly low-latency of less than 10 ms is required, in this paper, we investigate online versions of wave-U-net and propose using teacher-student learning to avoid the performance degradation caused by reducing input segmant length such that the system delay in a CPU is less than 10 ms. The experimental results revealed that the pro- posed model could perform in real-time and low-latency with a high performance of achieving a signal-to-distortion ratio improvement of about 8.35 dB.