2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-45.1
Paper Title COMPARATIVE STUDY OF DIFFERENT EPOCH EXTRACTION METHODS FOR SPEECH ASSOCIATED WITH VOICE DISORDERS
Authors Purva Barche, Krishna Gurugubelli, Anil Kumar Vuppala, International Institute of Information Technology, Hyderabad, India
SessionSPE-45: Speech Analysis
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-ANLS] Speech Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Accurate detection of epoch locations is important in extracting the features from the speech signal for automatic detection and assessment of voice disorders. Therefore, this study aimed to compare the various algorithms for detecting epoch locations from the speech associated with voice disorders. In this regard, nine state-of-the-art epoch extraction algorithms were considered, and their performance for different categories of voice disorders was evaluated on the SVD dataset. Experimental results indicate that most of the epoch extraction methods showed better performance for healthy speech; however, their performance was degraded for speech associated with voice disorders. Furthermore, the performance of epoch extraction methods was degraded for the speech of structural and neurogenic disorders compared to the speech of psychogenic and functional disorders. Among the different epoch extraction algorithms, zero phase-zero frequency filtering showed the best performance in terms identification rate (90.37%) and identification accuracy (0.34ms), for speech associated with voice disorders.