Paper ID | SPE-13.6 | ||
Paper Title | BIFOCAL NEURAL ASR: EXPLOITING KEYWORD SPOTTING FOR INFERENCE OPTIMIZATION | ||
Authors | Jon Macoskey, Grant Strimel, Ariya Rastrow, Amazon.com, United States | ||
Session | SPE-13: Speech Recognition 5: New Algorithms | ||
Location | Gather.Town | ||
Session Time: | Wednesday, 09 June, 13:00 - 13:45 | ||
Presentation Time: | Wednesday, 09 June, 13:00 - 13:45 | ||
Presentation | Poster | ||
Topic | Speech Processing: [SPE-GASR] General Topics in Speech Recognition | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | We present Bifocal RNN-T, a new variant of the Recurrent Neural Network Transducer (RNN-T) architecture designed for improved inference time latency on speech recognition tasks. The architecture enables a dynamic pivot for its runtime compute pathway, namely taking advantage of keyword spotting to select which component of the network to execute for a given audio frame. To accomplish this, we leverage a recurrent cell we call the Bifocal LSTM (BF-LSTM), which we detail in the paper. The architecture is compatible with other optimization strategies such as quantization, sparsification, and applying time-reduction layers, making it especially applicable for deployed, real-time speech recognition settings. We present the architecture and report comparative experimental results on voice-assistant speech recognition tasks. Specifically, we show our proposed Bifocal RNN-T can improve inference cost by 29.1% with matching word error rates and only a minor increase in memory size. |