2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-13.6
Paper Title BIFOCAL NEURAL ASR: EXPLOITING KEYWORD SPOTTING FOR INFERENCE OPTIMIZATION
Authors Jon Macoskey, Grant Strimel, Ariya Rastrow, Amazon.com, United States
SessionSPE-13: Speech Recognition 5: New Algorithms
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We present Bifocal RNN-T, a new variant of the Recurrent Neural Network Transducer (RNN-T) architecture designed for improved inference time latency on speech recognition tasks. The architecture enables a dynamic pivot for its runtime compute pathway, namely taking advantage of keyword spotting to select which component of the network to execute for a given audio frame. To accomplish this, we leverage a recurrent cell we call the Bifocal LSTM (BF-LSTM), which we detail in the paper. The architecture is compatible with other optimization strategies such as quantization, sparsification, and applying time-reduction layers, making it especially applicable for deployed, real-time speech recognition settings. We present the architecture and report comparative experimental results on voice-assistant speech recognition tasks. Specifically, we show our proposed Bifocal RNN-T can improve inference cost by 29.1% with matching word error rates and only a minor increase in memory size.