2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-32.3
Paper Title Constant approximation algorithm for minimizing concave impurity
Authors Thuan Nguyen, Hoang Le, Thinh Nguyen, Oregon State University, United States
SessionMLSP-32: Optimization Algorithms for Machine Learning
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-LEAR] Learning theory and algorithms
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Partitioning algorithms play a key role in many scientific and engineering disciplines. A partitioning algorithm divides a set into a number of disjoint subsets or partitions. Often, the quality of the resulted partitions is measured by the amount of impurity in each partition, the smaller impurity the higher quality of the partitions. Let $M$ be the number of $N$-dimensional elements in a set and $K$ be the number of desired partitions, then an exhaustive search over all the possible partitions to find a minimum partition has the complexity of $O(K^M)$ which quickly becomes impractical for many applications with modest values of $K$ and $M$. Thus, many approximate algorithms with polynomial time complexity have been proposed, but few provide the bounded guarantee. In this paper, we propose a linear-time algorithm with a bounded guarantee based on the maximum likelihood principle. Furthermore, the guarantee bound of the proposed algorithm is better than the state-of-the-art method in \cite{cicalese2019new} for many impurity functions, and at the same time, for $K \ge N$, the computational complexity is reduced from $O(M^3)$ to $O(M)$.