2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPCOM-5.2
Paper Title AN EFFICIENT ACTIVE SET ALGORITHM FOR COVARIANCE BASED JOINT DATA AND ACTIVITY DETECTION FOR MASSIVE RANDOM ACCESS WITH MASSIVE MIMO
Authors Ziyue Wang, University of Chinese Academy of Sciences, China; Zhilin Chen, University of Toronto, Canada; Ya-Feng Liu, Chinese Academy of Sciences, China; Foad Sohrabi, Wei Yu, University of Toronto, Canada
SessionSPCOM-5: Detection and Decoding
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Signal Processing for Communications and Networking: [SPC-MOD] Modulation, demodulation, encoding and decoding
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper proposes a computationally efficient algorithm to solve the joint data and activity detection problem for massive random access with massive multiple-input multiple-output (MIMO). The BS acquires the active devices and their data by detecting the transmitted preassigned nonorthogonal signature sequences. This paper employs a covariance based approach that formulates the detection problem as a maximum likelihood estimation (MLE) problem. To efficiently solve the problem, this paper designs a novel iterative algorithm with low complexity in the regime where the device activity pattern is sparse -- a key feature that existing algorithmic designs have not previously exploited for reducing complexity. Specifically, at each iteration, the proposed algorithm focuses on only a small subset of all potential sequences, namely the active set, which contains a few most likely active sequences (i.e., transmitted sequences by all active devices), and performs the detection for the sequences in the active set. The active set is carefully selected at each iteration based on the current detection result and the first-order optimality condition of the MLE problem. Simulation results show that the proposed active set algorithm enjoys significantly better computational efficiency (in terms of the CPU time) than the state-of-the-art algorithms.