2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-17.2
Paper Title STABLE AND EFFECTIVE ONE-STEP METHOD FOR PERSON SEARCH
Authors Ning Lv, Xuezhi Xiang, Xinyao Wang, Jie Yang, Rokia Abdeen, Harbin Engineering University, China; Abdulmotaleb El Saddik, University of Ottawa, Canada
SessionIVMSP-17: Looking at People
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVSMR] Image & Video Sensing, Modeling, and Representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Person search, which requires both pedestrian detection and person re-identification, is a challenging computer vision task applied to real-world scenarios. The challenges faced by detection and re-identification, such as occlusion, poor illumination, confusing background, are still urgent for person search. In addition, one-step methods for person search need to deal with the divergence between two tasks. In this work, we propose an end-to-end model containing the feature extractor, the region proposal network and the multi-task learning module. In order to process divergence between detection and re-identification, we introduce switchable normalization and gradient centralization to improve the stability of the model. To solve the imbalance problem of hard examples, we introduce focal loss as a classification loss in the multi-task learning module. The experimental results on two benchmarks, i.e., CUHK-SYSU and PRW, well demonstrate that our method outperforms the state-of-the-art one-step methods.