2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDHLT-17.1
Paper Title KNOWLEDGE DISTILLATION FOR IMPROVED ACCURACY IN SPOKEN QUESTION ANSWERING
Authors Chenyu You, Yale University, United States; Nuo Chen, Yuexian Zou, Peking University, China
SessionHLT-17: Language Understanding 5: Question Answering and Reading Comprehension
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Human Language Technology: [HLT-UNDE] Spoken Language Understanding and Computational Semantics
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Spoken question answering (SQA) is a challenging task that requires the machine to fully understand the complex spoken documents. Automatic speech recognition (ASR) plays a significant role in the development of QA systems. However, the recent work shows that ASR systems generate highly noisy transcripts, which critically limit the capability of machine comprehension on the SQA task. To address the issue, we present a novel distillation framework. Specifically, we devise a training strategy to perform knowledge distillation (KD) from spoken documents and written counterparts. Our work makes a step towards distilling knowledge from the language model as a supervision signal to lead to better student accuracy by reducing the misalignment between automatic and manual transcriptions. Experiments demonstrate that our approach outperforms several state-of-the-art language models on the Spoken-SQuAD dataset.