2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-32.2
Paper Title A Bayesian Inference Approach for Location-Based Micro Motions using Radio Frequency Sensing
Authors David A. Maluf, Cisco Systems, United States; Amr Elnakeeb, University of Southern California, United States; Matt Silverman, Cisco Systems, United States
SessionIVMSP-32: Applications 4
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The Bayesian inference is leveraged for target tracking from radio signals collected from access points (APs). The density of the moving object as well as its distance from the transmitted wireless signal substantially affect the signal strength arriving at the receiving end. The target tracking objective is formulated as an inference problem, by which we show how the Bayesian framework can be exploited to infer the parameters of interest for a given physics model. The channel state information (CSI) is collected from wireless APs, on which the inference is carried out. We employ a non-linear forward physics model of propagation, where we differentially infer the location, the velocity, and the fractional area of the moving surfaces in 3D space, versus time. The optimization is conducted via a Levenberg–Marquardt algorithm with analytically derived Jacobian and prior. The proposed model easily scales for any given number of access points. Experiments are conducted on Cisco wireless 4800 Access Point series; operating at 5 GHz radio frequency, and the probabilistic results for position and effective surface area estimates are provided, as well as numerical results for the point spread function from the statistics of the surface location.