2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-48.4
Paper Title A COMPACT JOINT DISTILLATION NETWORK FOR VISUAL FOOD RECOGNITION
Authors Heng Zhao, Kim-Hui Yap, Alex Chichung Kot, Nanyang Technological University, Singapore
SessionMLSP-48: Neural Network Applications
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Visual food recognition is emerging as an important application in dietary monitoring and management in recent years. Existing works use large backbone networks to achieve good performance. However, these networks are not able to be deployed on personal portable devices due to large size and computation cost. Some compact networks have been developed, however, their performance are usually lower than the large backbone networks. In view of this, this paper proposes a joint distillation framework that targets to achieve a high visual food recognition accuracy using a compact network. As opposed to the more traditional one-directional knowledge distillation methods, the proposed knowledge distillation framework trains both the large teacher network and the compact student network simultaneously. The framework introduces a new Multi-Layer Distillation (MLD) for simultaneous teacher-student learning at multiple layers of different abstraction. A novel Instance Activation Mapping (IAM) is proposed to jointly train the teacher and student networks using generated instance-level activation map that incorporates label information for each training image. Experimental results on the two benchmark datasets UECFood-256 and Food-101 show that the trained compact student network achieves state-of-the-art performance at 83.5% and 90.4%, respectively, while achieving more than 4 times deduction regarding network model size.