2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-35.1
Paper Title INDEPENDENT VECTOR ANALYSIS USING SEMI-PARAMETRIC DENSITY ESTIMATION VIA MULTIVARIATE ENTROPY MAXIMIZATION
Authors Lucas Damasceno, Charles Cavalcante, Federal University of Ceará, Brazil; Tülay Adali, University of Maryland, Baltimore County, United States; Zois Boukouvalas, American University, United States
SessionMLSP-35: Independent Component Analysis
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-ICA] Independent component analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Due to the wide use of multi-sensor technology, analysis of multiple sets of data is at the heart of many challenging engineering problems. Independent vector analysis (IVA), a recent generalization of independent component analysis (ICA), enables the joint analysis of datasets and extraction of latent sources through the use of a simple yet effective generative model. However, the success of IVA is tied to proper estimation of the probability density function (PDF) of the multivariate latent sources; information that is generally unknown. In this work, we propose a new flexible and efficient multivariate PDF estimation technique based on the maximum entropy principle and apply this technique to the development of an effective IVA algorithm that successfully matches multivariate latent sources from a wide range of distributions. We verify the effectiveness of the new estimation technique and further demonstrate the superior performance of the new IVA algorithm numerically using simulated data.