2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDHLT-6.1
Paper Title ST-BERT: CROSS-MODAL LANGUAGE MODEL PRE-TRAINING FOR END-TO-END SPOKEN LANGUAGE UNDERSTANDING
Authors Minjeong Kim, Gyuwan Kim, NAVER CLOVA, South Korea; Sang-Woo Lee, Jung-Woo Ha, NAVER CLOVA, NAVER AI LAB, South Korea
SessionHLT-6: Language Understanding 2: End-to-end Speech Understanding 2
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Human Language Technology: [HLT-UNDE] Spoken Language Understanding and Computational Semantics
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Language model pre-training has shown promising results in various downstream tasks. In this context, we introduce a cross-modal pre-trained language model, called Speech-Text BERT (ST-BERT), to tackle end-to-end spoken language understanding (E2E SLU) tasks. Taking phoneme posterior and subword-level text as an input, ST-BERT learns a contextualized cross-modal alignment via our two proposed pre-training tasks: Cross-modal Masked Language Modeling (CM-MLM) and Cross-modal Conditioned Language Modeling (CM-CLM). Experimental results on three benchmarks present that our approach is effective for various SLU datasets and shows a surprisingly marginal performance degradation even when 1% of the training data are available. Also, our method shows further SLU performance gain via domain-adaptive pre-training with domain-specific speech-text pair data.