2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-5.2
Paper Title Spectral folding and two-channel filter-banks on arbitrary graphs
Authors Eduardo Pavez, University of Southern California, United States; Benjamin Girault, Université de Rennes, France; Antonio Ortega, University of Southern California, United States; Philip A. Chou, Google Research, United States
SessionSPTM-5: Sampling, Multirate Signal Processing and Digital Signal Processing 1
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP] Sampling, Multirate Signal Processing and Digital Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In the past decade, several multi-resolution representation theories for graph signals have been proposed. Bipartite filter-banks stand out as the most natural extension of time domain filter-banks, in part because perfect reconstruction, orthogonality and bi-orthogonality conditions in the graph spectral domain resemble those for traditional filter-banks. Therefore, many of the well known orthogonal and bi-orthogonal designs can be easily adapted for graph signals. A major limitation is that this framework can only be applied to the normalized Laplacian of bipartite graphs. In this paper we extend this theory to arbitrary graphs and positive semi-definite variation operators. Our approach is based on a different definition of the graph Fourier transform (GFT), where orthogonality is defined with respect to the Q inner product. We construct GFTs satisfying a spectral folding property, which allows us to easily construct orthogonal and bi-orthogonal perfect reconstruction filter-banks. We illustrate signal representation and computational efficiency of our filter-banks on 3D point clouds with hundreds of thousands of points.