2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-12.5
Paper Title FEDERATED ALGORITHM WITH BAYESIAN APPROACH: OMNI-FEDGE
Authors Sai Anuroop Kesanapalli, B. N. Bharath, Indian Institute of Technology, Dharwad, India
SessionMLSP-12: Federated Learning 1
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DFED] Distributed/Federated learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we consider the problem of Federated Learning (FL) under non-i.i.d data setting. We provide an improved estimate of the empirical loss at each node by using a weighted average of losses across nodes with a penalty term. These uneven weights to different nodes are assigned by taking a novel Bayesian approach to the problem where the problem of learning for each device/node is cast as maximizing the likelihood of a joint distribution. This joint distribution is for losses of nodes obtained by using data across devices for a given neural network of a node. We then provide a PAC learning guarantee on the objective function which reveals that the true average risk is no more than the proposed objective and the error term. We leverage this guarantee to propose an algorithm called Omni-Fedge. Using MNIST and Fashion MNIST data-sets, we show that the performance of the proposed algorithm is significantly better than existing algorithms.