2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDASPS-4.1
Paper Title TRAFFIC SPEED FORECASTING VIA SPATIO-TEMPORAL ATTENTIVE GRAPH ISOMORPHISM NETWORK
Authors Qing Yang, Ting Zhong, Fan Zhou, University of Electronic Science and Technology of China, China
SessionASPS-4: Autonomous Systems
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Applied Signal Processing Systems: Signal Processing over IoT [OTH-IoT]
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Traffic forecasting is of particular interest in intelligent transportation systems (ITS). This problem is challenging owing to the complicated spatio-temporal dependencies between different areas in a road sensor network. Previous approaches have applied various deep learning methods for traffic forecasting, e.g., leveraging graph convolutional networks (GCNs) for spatial correlation modeling and utilizing recurrent neural networks (RNNs) to capture temporal traffic evolutions. However, the existing GCN-based models can not adequately distinguish the non-Euclidean topological structure of road traffic and are easily affected by random traffic noise. This work proposes an end-to-end framework to capture spatial dependencies through graph isomorphism network, while explicitly taking network topologic similarities into account and leveraging symmetric traffic for learning the traffic conditions. Extensive experiments on two real-world traffic datasets demonstrate the superiority of our proposed approach.