2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-6.2
Paper Title PERIODIC SIGNAL DENOISING: AN ANALYSIS-SYNTHESIS FRAMEWORK BASED ON RAMANUJAN FILTER BANKS AND DICTIONARIES
Authors Pranav Kulkarni, P. P. Vaidyanathan, California Institute of Technology, United States
SessionSPTM-6: Sampling, Multirate Signal Processing and Digital Signal Processing 2
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP] Sampling, Multirate Signal Processing and Digital Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Ramanujan filter banks (RFB) have in the past been used to identify periodicities in data. These are analysis filter banks with no synthesis counterpart for perfect reconstruction of the original signal, so they have not been useful for denoising periodic signals. This paper proposes to use a hybrid analysis-synthesis framework for denoising discrete-time periodic signals. The synthesis occurs via a pruned dictionary designed based on the output energies of the RFB analysis filters. A unique property of the framework is that the denoised output signal is guaranteed to be periodic unlike any of the other methods. For a large range of input noise levels, the proposed approach achieves a stable and high SNR gain outperforming many traditional denoising techniques.