2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-31.4
Paper Title A PARALLELIZABLE LATTICE RESCORING STRATEGY WITH NEURAL LANGUAGE MODELS
Authors Ke Li, Johns Hopkins University, United States; Daniel Povey, Xiaomi Corp., China; Sanjeev Khudanpur, Johns Hopkins University, United States
SessionSPE-31: Speech Recognition 11: Novel Approaches
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper proposes a parallel computation strategy and a posterior-based lattice expansion algorithm for efficient lattice rescoring with neural language models (LMs) for automatic speech recognition. First, lattices from first-pass decoding are expanded by the proposed posterior-based lattice expansion algorithm. Second, each expanded lattice is converted into a minimal list of hypotheses that covers every arc. Each hypothesis is constrained to be the best path for at least one arc it includes. For each lattice, the neural LM scores of the minimal list are computed in parallel and are then integrated back to the lattice in the rescoring stage. Experiments on the Switchboard dataset show that the proposed rescoring strategy obtains comparable recognition performance and generates more compact lattices than a competitive baseline method. Furthermore, the parallel rescoring method offers more flexibility by simplifying the integration of PyTorch-trained neural LMs for lattice rescoring with Kaldi.