Paper ID | HLT-11.1 | ||
Paper Title | ASR n-best Fusion Nets | ||
Authors | Xinyue Liu, Mingda Li, Luoxin Chen, Prashan Wanigasekara, Weitong Ruan, Haidar Khan, Wael Hamza, Chengwei Su, Amazon, United States | ||
Session | HLT-11: Language Understanding 3: Speech Understanding - General Topics | ||
Location | Gather.Town | ||
Session Time: | Thursday, 10 June, 13:00 - 13:45 | ||
Presentation Time: | Thursday, 10 June, 13:00 - 13:45 | ||
Presentation | Poster | ||
Topic | Human Language Technology: [HLT-UNDE] Spoken Language Understanding and Computational Semantics | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Current spoken language understanding systems heavily rely on the best hypothesis (ASR 1-best) generated by automatic speech recognition, which is used as the input for downstream models such as natural language understanding (NLU) modules. However, the potential errors and misrecognition in ASR 1-best raise challenges to NLU. It is usually difficult for NLU models to recover from ASR errors without additional signals, which leads to suboptimal SLU performance.This paper proposes a fusion network to jointly consider ASR n-best hypotheses for enhanced robustness to ASR errors.Our experiments on Alexa data show that our model achieved 21.71% error reduction compared to baseline trained on transcription for domain classification. |