2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-28.3
Paper Title END-TO-END MULTI-ACCENT SPEECH RECOGNITION WITH UNSUPERVISED ACCENT MODELLING
Authors Song Li, Beibei Ouyang, Dexin Liao, Shipeng Xia, Lin Li, Qingyang Hong, Xiamen University, China
SessionSPE-28: Speech Recognition 10: Robustness to Human Speech Variability
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-ROBU] Robust Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract End-to-end speech recognition has achieved good recognition performance on standard English pronunciation datasets. However, one prominent problem with end-to-end speech recognition systems is that non-native English speakers tend to have complex and varied accents, which reduces the accuracy of English speech recognition in different countries. In order to grapple with such an issue, we first investigate and improve the current mainstream end-to-end multi-accent speech recognition technologies. In addition, we propose two unsupervised accent modelling methods, which convert accent information into a global embedding, and use it to improve the performance of the end-to-end multi-accent speech recognition systems. Experimental results on accented English datasets of eight countries (AESRC2020) show that, compared with the Transformer baseline, our proposed methods achieve relative 14.8% and 15.4% average word error rate (WER) reduction in the development set and evaluation set, respectively.