2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-6.6
Paper Title WEIGHTED MAGNITUDE-PHASE LOSS FOR SPEECH DEREVERBERATION
Authors Jingshu Zhang, Mark Plumbley, Wenwu Wang, University of Surrey, United Kingdom
SessionSPE-6: Speech Enhancement 2: Speech Separation and Dereverberation
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In real rooms, recorded speech usually contains reverberation, which degrades the quality and intelligibility of the speech. It has proven effective to use neural networks to estimate complex ideal ratio masks (cIRMs) using mean square error (MSE) loss for speech dereverberation. However, in some cases, when using MSE loss to estimate complex-valued masks, phase may have a disproportionate effect compared to magnitude. We propose a new weighted magnitude-phase loss function, which is divided into a magnitude component and a phase component, to train a neural network to estimate complex ideal ratio masks. A weight parameter is introduced to adjust the relative contribution of magnitude and phase to the overall loss. We find that our proposed loss function outperforms the regular MSE loss function for speech dereverberation.