2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-10.6
Paper Title A NOVEL CONVOLUTIONAL NEURAL NETWORK MODEL TO REMOVE MUSCLE ARTIFACTS FROM EEG
Authors Haoming Zhang, Chen Wei, Mingqi Zhao, Southern University of Science and Technology, China; Haiyan Wu, University of Macau, China; Quanying Liu, Southern University of Science and Technology, China
SessionBIO-10: Deep Learning for EEG Analysis
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO] Biomedical signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The recorded electroencephalography (EEG) signals are usually contaminated by many artifacts. In recent years, deep learning models have been used for denoising of electroencephalography (EEG) data and provided comparable performance with that of traditional techniques. However, the performance of the existing networks in electromyograph (EMG) artifact removal was limited and suffered from the over-fitting problem. Here we introduce a novel convolutional neural network (CNN) with gradually ascending feature dimensions and downsampling in time series for removing muscle artifacts in EEG data. Compared with other types of convolutional networks, this model largely eliminates the over-fitting and significantly outperforms four benchmark networks in EEGdenoiseNet. Our study suggested that the deep network architecture might help avoid overfitting and better remove EMG artifacts in EEG.