2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-16.1
Paper Title NETWORK TOPOLOGY INFERENCE WITH GRAPHON SPECTRAL PENALTIES
Authors T. Mitchell Roddenberry, Madeline Navarro, Santiago Segarra, Rice University, United States
SessionSPTM-16: Graph Topology Inference
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We consider the problem of inferring the unobserved edges of a graph from data supported on its nodes. In line with existing approaches, we propose a convex program for recovering a graph Laplacian that is approximately diagonalizable by a set of eigenvectors obtained from the second-order moment of the observed data. Unlike existing work, we incorporate prior knowledge about the distribution from where the underlying graph was drawn. In particular, we consider the case where the graph was drawn from a graphon model, and we supplement our convex optimization problem with a provably-valid regularizer on the spectrum of the graph to be recovered. We present the cases where the graphon model is assumed to be known and the more practical setting where the relevant features of the model are inferred from auxiliary network observations. Numerical experiments on synthetic and real-world data illustrate the advantage of leveraging the proposed graphon prior, even when the prior is imperfect.