2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-18.5
Paper Title SPARSE GRAPH BASED SKETCHING FOR FAST NUMERICAL LINEAR ALGEBRA
Authors Dong Hu, Rensselaer Polytechnic Institute, United States; Shashanka Ubaru, IBM, United States; Alex Gittens, Rensselaer Polytechnic Institute, United States; Kenneth Clarkson, Lior Horesh, Vassilis Kalantzis, IBM, United States
SessionMLSP-18: Matrix Factorization and Applications
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-MFC] Matrix factorizations/completion
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In recent years, a variety of randomized constructions of sketching matrices have been devised, that have been used in fast algorithms for numerical linear algebra problems, such as least squares regression, low-rank approximation, and the approximation of leverage scores. A key property of sketching matrices is that of subspace embedding. In this paper, we study sketching matrices that are obtained from bipartite graphs that are sparse, i.e., have left degree s that is small. In particular, we explore two popular classes of sparse graphs, namely, expander graphs and magical graphs. For a given subspace $U \subseteq \R^n$ of dimension k, we show that the magical graph with left degree s=2 yields a $(1 ± \eps)$ l2-subspace embedding for U, if the number of right vertices (the sketch size) $m = O({k^2}/{\eps^2})$. The expander graph with $s = O({\log k}/{\eps})$ yields a subspace embedding for $m =O({k \log k}/{\eps^2})$. We also discuss the construction of sparse sketching matrices with reduced randomness using expanders based on error-correcting codes. Empirical results on various synthetic and real datasets show that these sparse graph sketching matrices work very well in practice.