2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-10.5
Paper Title ENHANCING MULTI-CHANNEL EEG CLASSIFICATION WITH GRAMIAN TEMPORAL GENERATIVE ADVERSARIAL NETWORKS
Authors Chi Nok Enoch Kan, Richard Povinelli, Dong Hye Ye, Marquette University, United States
SessionBIO-10: Deep Learning for EEG Analysis
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO] Biomedical signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Deep learning's requirements for large amounts of training data remains a challenge for researchers and developers. Generative Adversarial Network (GAN) is commonly used in medical image analysis to generate novel training images to help resolve this issue. While deep learning has many clinical applications in radiology, its applications in medical time series data such as electroencephalogram (EEG) are usually constrained to 1 dimension. Hence, there are few available GAN architectures that effectively synthesize single and multi-channel EEG. In this paper, we propose a novel method to synthesize multi-channel EEG in the form of Gramian Angular Field (GAF) images with a Gramian Temporal Generative Adversarial Network (GT-GAN). The proposed network is capable of generating realistic GAF images and enhances EEG anomaly detection accuracy in residual learning frameworks.