2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-3.2
Paper Title DETECTION OF COVID-19 THROUGH THE ANALYSIS OF VOCAL FOLD OSCILLATIONS
Authors Mahmoud Al Ismail, Soham Deshmukh, Rita Singh, Carnegie Mellon University, United States
SessionBIO-3: Machine Learning for COVID-19 diagnosis
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO] Biomedical signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Phonation, or the vibration of the vocal folds, is the primary source of vocalization in the production of voiced sounds by humans. It is a complex bio-mechanical process that is highly sensitive to changes in the speaker's respiratory parameters. Since most symptomatic cases of COVID-19 present with moderate to severe impairment of respiratory functions, we hypothesize that signatures of COVID-19 may be observable by examining the vibrations of the vocal folds. Our goal is to validate this hypothesis, and to quantitatively characterize the changes observed to enable the detection of COVID-19 from voice. For this, we use a dynamical system model for the oscillation of the vocal folds, and solve it using our recently developed ADLES algorithm to yield vocal fold oscillation patterns directly from recorded speech. Experimental results on a clinically curated dataset of COVID-19 positive and negative subjects reveal characteristic patterns of vocal fold oscillations that are correlated with COVID-19. We show that these are prominent and discriminative enough that even simple classifiers such as logistic regression yields high detection accuracies using just the recordings of isolated extended vowels.