2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-47.2
Paper Title A DNN AUTOENCODER FOR AUTOMOTIVE RADAR INTERFERENCE MITIGATION
Authors Shengyi Chen, Ruhr-Universität Bochum & HELLA GmbH & Co. KGaA, Germany; Jalal Taghia, Tai Fei, Uwe Kühnau, HELLA GmbH & Co. KGaA, Germany; Nils Pohl, Rainer Martin, Ruhr-Universität Bochum, Germany
SessionMLSP-47: Applications of Machine Learning
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, a novel interference mitigation approach using an autoencoder in combination with a traditional interference detection filter is introduced. It is shown that by employing the gated convolution, the encoder has the ability to learn the signal pattern from the remaining interference-free signal. The decoder can recover the interference-contaminated signal segments from the bottleneck representation as computed by the encoder. Experimental results show that the proposed method can provide a remarkable improvement in signal-to-interference-plus-noise ratio (SINR) and preserves its robustness on real radar measurements in severely disturbed scenarios that are more complex than the training dataset.