2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-8.5
Paper Title An adaptive Regularization Approach to Portfolio Optimization
Authors Tarig Ballal, King Abdullah University for Science and Technology, Saudi Arabia; Abdelrahman Abdelrahman, Ali Muqaibel, King Fahd University of Petroleum and Minerals, Saudi Arabia; Tareq Al-Naffouri, King Abdullah University for Science and Technology, Saudi Arabia
SessionSPTM-8: Estimation Theory and Methods 2
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We address the portfolio optimization problem using the global minimum variance portfolio (GMVP). The GMVP gives the weights as a function of the inverse of the covariance matrix (CM) of the stock net returns in a closed-form. The matrix inversion operation usually intensifies the impact of noise when the matrix is ill-conditioned, which often happens when the sample covariance matrix (SCM) is used. A regularized sample covariance matrix (RSCM) is usually used to alleviate the problem. In this work, we address the regularization issue from a different perspective. We manipulate the expression of the GMVP weights to convert it to an inner product of two vectors; then, we focus on obtaining accurate estimations of these vectors. We show that this approach results in a formula similar to those of the RSCM based methods, yet with a different interpretation of the regularization parameter's role. In the proposed approach, the regularization parameter is adjusted adaptively based on the current stock returns, which results in improved performance and enhanced robustness to noise. Our results demonstrate that, with proper regularization parameter tuning, the proposed adaptively regularized GMVP outperforms state-of-the-art RSCM methods in different test scenarios.