2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-16.5
Paper Title LEARNING THE RELEVANT SUBSTRUCTURES FOR TASKS ON GRAPH DATA
Authors Lei Chen, Zhengdao Chen, Joan Bruna, New York University, United States
SessionSS-16: Theoretical Foundations of Graph Neural Networks
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Special Sessions: Theoretical Foundations of Graph Neural Networks
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Focusing on graph-structured prediction tasks, we demonstrate the ability of neural networks to provide both strong predictive performance and easy interpretability, two properties often at odds in modern deep architectures. We formulate the latter by the ability to extract the relevant substructures for a given task, inspired by biology and chemistry applications. To do so, we utilize the Local Relational Pooling (LRP) model, which is recently introduced with motivations from substructure counting. In this work, we demonstrate that LRP models can be used on challenging graph classification tasks to provide both state-of-the-art performance and interpretability, through the detection of the relevant substructures used by the network to make its decisions. Besides their broad applications (biology, chemistry, fraud detection, etc.), these models also raise new theoretical questions related to compressed sensing and to computational thresholds on random graphs.