2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-2.3
Paper Title Deep Learning for Linear Inverse Problems Using the Plug-and-Play Priors Framework
Authors Wei Chen, Beijing Jiaotong University, China; David Wipf, Amazon AI Research Lab, China; Miguel R.D. Rodrigues, University College London, United Kingdom
SessionSS-2: Deep Learning Methods for Solving Linear Inverse Problems
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Special Sessions: Deep Learning Methods for Solving Linear Inverse Problems
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Linear inverse problems appear in many applications, where different algorithms are typically employed to solve each inverse problem. Nowadays, the rapid development of deep learning (DL) provides a fresh perspective for solving the linear inverse problem: a number of well-designed network architectures results in state-of-the-art performance in many applications. In this overview paper, we present the combination of the DL and the Plug-and-Play priors (PPP) framework, showcasing how it allows solving various inverse problems by leveraging the impressive capabilities of existing DL based denoising algorithms. Open challenges and potential future directions along this line of research are also discussed.