2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-25.1
Paper Title A NEW TUBULAR STRUCTURE TRACKING ALGORITHM BASED ON CURVATURE-PENALIZED PERCEPTUAL GROUPING
Authors Li Liu, Donghua University, China; Da Chen, Minglei Shu, Qilu University of Technology (Shandong Academy of Sciences), China; Huazhong Shu, Southeast University, China; Laurent Cohen, Paris Dauphine University, France
SessionIVMSP-25: Tracking
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we propose a new minimal path-based framework for minimally interactive tubular structure tracking in conjunction with a perceptual grouping scheme. The minimal path models have shown great advantages in tubular structures tracing. However, they suffer from shortcuts or short branches combination problems especially in the case of tubular network with complicated structures or background. Thus, we utilize the curvature-penalized minimal paths and the prescribed tubular trajectories to seek the desired shortest path. The proposed approach benefits from the local smoothness prior on tubular structures and the global optimality of the graph-based path searching scheme. Experimental results on synthetic and real images prove that the proposed model indeed obtains outperformance to state-of-the-art minimal pathbased algorithms.