2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-17.3
Paper Title A CONVEX PENALTY FOR BLOCK-SPARSE SIGNALS WITH UNKNOWN STRUCTURES
Authors Hiroki Kuroda, Daichi Kitahara, Akira Hirabayashi, Ritsumeikan University, Japan
SessionSPTM-17: Sampling, Multirate Signal Processing and Digital Signal Processing 3
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP] Sampling, Multirate Signal Processing and Digital Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose a novel convex penalty for block-sparse signals whose block partitions are unknown a priori. We first introduce a nonconvex penalty function, where the block partition is adjusted for the signal of interest by minimizing the mixed l2/l1 norm over all possible block partitions. Then, by exploiting a variational representation of the l2 norm, we derive the proposed penalty function as a suitable convex relaxation of the nonconvex penalty. For the resulting regularization model, we provide a proximal splitting-based algorithm which is guaranteed to converge to an optimal solution. Numerical experiments show the effectiveness of the proposed penalty.