2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMMSP-1.6
Paper Title Large Database Compression Based on Perceived Information
Authors Thomas Maugey, Inria, France; Laura Toni, University College London, United Kingdom
SessionMMSP-1: Multimedia Signal Processing
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Multimedia Signal Processing: Multimedia Databases and File Systems
Abstract Lossy compression algorithms trade bits for quality, aiming at reducing as much as possible the bitrate needed to represent the original source (or set of sources), while preserving the source quality. In this letter, we propose a novel paradigm of compression algorithms, aimed at minimizing the information loss perceived by the final user instead of the actual source quality loss, under compression rate constraints. As main contributions, we first introduce the concept of perceived information (PI), which reflects the information perceived by a given user experiencing a data collection, and which is evaluated as the volume spanned by the sources features in a personalized latent space. We then formalize the rate-PI optimization problem and propose an algorithm to solve this compression problem. Finally, we validate our algorithm against benchmark solutions with simulation results, showing the gain in taking into account users' preferences while also maximizing the perceived information in the feature domain.