2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-32.5
Paper Title Centrality based number of cluster estimation in Graph clustering
Authors Mahdi Shamsi, Soosan Beheshti, Ryerson University, Canada
SessionMLSP-32: Optimization Algorithms for Machine Learning
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-LEAR] Learning theory and algorithms
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Graph clustering algorithms require the number of the clusters as an input. However, in many real-world practical applications the correct number of the clusters is unknown. Determining the optimal number of clusters for graph clustering algorithms is an essential and challenging task which is a form of model order selection. Here, we propose a new algorithm for estimating the number of clusters in a graph, using the centrality measure. In graph theory, centrality measure is used for determining the most important and most influential nodes within a graph. The proposed centrality based number of cluster estimation (CB-NCE) method considers minimizing the probabilistic bounds on average central error of centrality. The desired criterion represents an information theoretic distance measure in form of description length of centrality. The simulation results show the superior performance of the proposed algorithm among other existing methods, in terms of clustering performance metrics such as normalized mutual information, Rand index and F-measure.