2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-32.6
Paper Title DEPENDENCE-GUIDED MULTI-VIEW CLUSTERING
Authors Xia Dong, Danyang Wu, Feiping Nie, Rong Wang, Xuelong Li, Northwestern Polytechnical University, China
SessionMLSP-32: Optimization Algorithms for Machine Learning
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-LEAR] Learning theory and algorithms
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we propose a novel approach called dependenceguided multi-view clustering (DGMC). Our model enhances the dependence between unified embedding learning and clustering, as well as promotes the dependence between unified embedding and embedding of each view. Specifically, DGMC learns a unified embedding and partitions data in a joint fashion, thus the clustering results can be directly obtained. A kernel dependence measure is employed to learn a unified embedding by forcing it to be close to different views, thus the complex dependence among different views can be captured. Moreover, an implicit-weight learning mechanism is provided to ensure the diversity of different views. An efficient algorithm with rigorous convergence analysis is derived to solve the proposed model. Experimental results demonstrate the advantages of the proposed method over the state of the arts on real-world datasets.