2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-5.3
Paper Title INJECTING WORD INFORMATION WITH MULTI-LEVEL WORD ADAPTER FOR CHINESE SPOKEN LANGUAGE UNDERSTANDING
Authors Dechuan Teng, Libo Qin, Wanxiang Che, Sendong Zhao, Ting Liu, Harbin Institute of Technology, China
SessionSS-5: Domain Adaptation for Multimedia Signal Processing
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Special Sessions: Domain Adaptation for Multimedia Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we improve Chinese spoken language understanding (SLU) by injecting word information. Previous studies on Chinese SLU do not consider the word information, failing to detect word boundaries that are beneficial for intent detection and slot filling. To address this issue, we propose a multi-level word adapter to inject word information for Chinese SLU, which consists of (1) sentence-level word adapter, which directly fuses the sentence representations of the word information and character information to perform intent detection and (2) character-level word adapter, which is applied at each character for selectively controlling weights on word information as well as character information. Experimental results on two Chinese SLU datasets show that our model can capture useful word information and achieve state-of-the-art performance.