2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-14.2
Paper Title t-k-means: A ROBUST AND STABLE k-means VARIANT
Authors Yiming Li, Yang Zhang, Qingtao Tang, Tsinghua University, China; Weipeng Huang, University College Dublin, China; Yong Jiang, Shu-Tao Xia, Tsinghua University, China
SessionMLSP-14: Learning Algorithms 1
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-LEAR] Learning theory and algorithms
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract $k$-means algorithm is one of the most classical clustering methods, which has been widely and successfully used in signal processing. However, due to the thin-tailed property of the Gaussian distribution, $k$-means algorithm suffers from relatively poor performance on the dataset containing heavy-tailed data or outliers. Besides, standard $k$-means algorithm also has relatively weak stability, $i.e.$ its results have a large variance, which reduces its credibility. In this paper, we propose a robust and stable $k$-means variant, dubbed the $t$-$k$-means, as well as its fast version to alleviate those problems. Theoretically, we derive the $t$-$k$-means and analyze its robustness and stability from the aspect of the loss function and the expression of the clustering center, respectively. Extensive experiments are also conducted, which verify the effectiveness and efficiency of the proposed method. The code for reproducing main results is available at \url{https://github.com/THUYimingLi/t-k-means}.