2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-16.2
Paper Title NETWORK TOPOLOGY CHANGE-POINT DETECTION FROM GRAPH SIGNALS WITH PRIOR SPECTRAL SIGNATURES
Authors Chiraag Kaushik, T. Mitchell Roddenberry, Santiago Segarra, Rice University, United States
SessionSPTM-16: Graph Topology Inference
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We consider the problem of sequential graph topology change-point detection from graph signals. We assume that signals on the nodes of the graph are regularized by the underlying graph structure via a graph filtering model, which we then leverage to distill the graph topology change-point detection problem to a subspace detection problem. We demonstrate how prior information on the spectral signature of the post-change graph can be incorporated to implicitly denoise the observed sequential data, thus leading to a natural CUSUM-based algorithm for change-point detection. Numerical experiments illustrate the performance of our proposed approach, particularly underscoring the benefits of (potentially noisy) prior information.