2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-15.3
Paper Title THE FAR-FIELD EQUATORIAL ARRAY FOR BINAURAL RENDERING
Authors Jens Ahrens, Hannes Helmholz, Chalmers University of Technology, Sweden; David Lou Alon, Sebastià Amengual Garí, Facebook Reality Labs, United States
SessionAUD-15: Modeling, Analysis and Synthesis of Acoustic Environments 1: Soundfield Acquisition and Reproduction
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SARR] Spatial Audio Recording and Reproduction
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We present a method for obtaining a spherical harmonic representation of a sound field based on a microphone array along the equator of a rigid spherical scatterer. The two-dimensional plane wave decomposition of the incoming sound field is computed from the microphone signals. The influence of the scatterer is removed under the assumption of distant sound sources, and the result is converted to a spherical harmonic (SH) representation, which in turn can be rendered binaurally. The approach requires an order of magnitude fewer microphones compared to conventional spherical arrays that operate at the same SH order at the expense of not being able to accurately represent non-horizontally-propagating sound fields. Although the scattering removal is not perfect at high frequencies at low harmonic orders, numerical evaluation demonstrates the effectiveness of the approach.