2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-46.6
Paper Title A MNEMONIC KALMAN FILTER FOR NON-LINEAR SYSTEMS WITH EXTENSIVE TEMPORAL DEPENDENCIES
Authors Steffen Jung, Isabel Schlangen, Alexander Charlish, Fraunhofer FKIE, Germany
SessionMLSP-46: Theory and Applications
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-SLER] Sequential learning; sequential decision methods
Abstract Analytic dynamic models for target estimation are often approximations of the potentially complex behaviour of the object of interest. Its true motion might depend on hundreds of parameters and can involve long-term temporal correlation. However, conventional models keep the degrees of freedom low and they usually assume the Markov property to reduce computational complexity. In particular, the Kalman Filter assumes prior and posterior Gaussian densities and is hence restricted to linear transition functions which are often insufficient to reflect the behaviour of a real object. In this paper, a Mnemonic Kalman Filter is introduced which overcomes the Markov property and the linearity restriction by learning to predict a full transition probability density with Long Short-Term Memory networks.