2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-32.1
Paper Title PARTIAL FEATURE AGGREGATION NETWORK FOR REAL-TIME OBJECT COUNTING
Authors Houshun Yu, Li Zhang, Soochow university, China
SessionIVMSP-32: Applications 4
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Object counting has become an important task in computer vision for its practical applications in surveillance system. Previous methods for object counting have achieved promising results in accuracy, but few researchers focus on the real-time performance of counting methods. In this paper, we propose an efficient and accurate light-weight network for object counting, called Partial Feature Aggregation Network (PFANet). In this novel method, a Partial Feature Aggregation (PFA) structure is designed to accelerate networks and improve the utilization of multi-scale features. Moreover, PFANet uses the dilated convolution to enlarge the receptive-filed of network. Experiments on two datasets indicate our network exceeds the existing real-time counting networks in both accuracy and efficiency.