2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-26.1
Paper Title SPEECH ENHANCEMENT WITH MIXTURE OF DEEP EXPERTS WITH CLEAN CLUSTERING PRE-TRAINING
Authors Shlomo E. Chazan, Jacob Goldberger, Sharon Gannot, Bar-Ilan University, Israel
SessionAUD-26: Signal Enhancement and Restoration 3: Signal Enhancement
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEN] Signal Enhancement and Restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this study we present a mixture of deep experts (MoDE) neural network architecture for single microphone speech enhancement. Our architecture comprises a set of deep neural networks (DNNs), each of which is an ‘expert’ in a different speech spectral pattern such as phoneme. A gating DNN is responsible for the latent variables which are the weights assigned to each expert’s output given a speech segment. The experts estimate a mask from the noisy input and the final mask is then obtained as a weighted average of the experts’ estimates, with the weights determined by the gating DNN. A soft spectral attenuation, based on the estimated mask, is then applied to enhance the noisy speech signal. As a byproduct, we gain reduction at the complexity in test time. We show that the experts specialization allows better robustness to unfamiliar noise types.