2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-3.6
Paper Title Rate-distortion optimized motion estimation for on-the-sphere compression of 360 videos
Authors Alban Marie, Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy, Inria, France
SessionIVMSP-3: Image & Video Coding 1
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVCOM] Image & Video Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract On-the-sphere compression of omnidirectional videos is a very promising approach. First, it saves computational complexity as it avoids to project the sphere onto a 2D map, as classically done. Second, and more importantly, it allows to achieve a better rate-distortion tradeoff, since neither the visual data nor its domain of definition are distorted. In this paper, the on-the-sphere compression for omnidirectional still images is extended to videos. We first propose a complete review of existing spherical motion models. Then we propose a new one called tangent-linear+t. We finally propose a rate-distortion optimized algorithm to locally choose the best motion model for efficient motion estimation/compensation. For that purpose, we additionally propose a finer search pattern, called spherical-uniform, for the motion parameters, which leads to a more accurate block prediction. The novel algorithm leads to rate-distortion gains compared to methods based on a unique motion model.