2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-2.4
Paper Title ECHO STATE SPEECH RECOGNITION
Authors Harsh Shrivastava, Georgia Institute of Technology, United States; Ankush Garg, Yuan Cao, Yu Zhang, Tara N. Sainath, Google, United States
SessionSPE-2: Speech Recognition 2: Neural transducer Models 2
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose automatic speech recognition (ASR) models inspired by echo state network (ESN) , in which a subset of recurrent neural networks (RNN) layers in the models are randomly initialized and untrained. Our study focuses on RNN-T and Conformer models, and we show that model quality does not drop even when the decoder is fully randomized. What is more, such models can be trained more efficiently as the decoders do not require to be updated. By contrast, randomizing encoders hurts model quality, indicating that optimizing encoders and learn proper representations for acoustic inputs are more vital for speech recognition. Overall, we challenge the common practice of training ASR models for all components, and demonstrate that ESN-based models can perform equally well but enable more efficient training and storage than fully-trainable counterparts.