2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-9.5
Paper Title HIERARCHICAL TRANSFORMER-BASED LARGE-CONTEXT END-TO-END ASR WITH LARGE-CONTEXT KNOWLEDGE DISTILLATION
Authors Ryo Masumura, Naoki Makishima, Mana Ihori, Akihiko Takashima, Tomohiro Tanaka, Shota Orihashi, NTT Corporation, Japan
SessionSPE-9: Speech Recognition 3: Transformer Models 1
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We present a novel large-context end-to-end automatic speech recognition (E2E-ASR) model and its effective training method based on knowledge distillation. Common E2E-ASR models have mainly focused on utterance-level processing in which each utterance is independently transcribed. On the other hand, large-context E2E-ASR models, which take into account long-range sequential contexts beyond utterance boundaries, well handle a sequence of utterances such as discourses and conversations. However, the transformer architecture, which has recently achieved state-of-the-art ASR performance among utterance-level ASR systems, has not yet been introduced into the large-context ASR systems. We can expect that the transformer architecture can be leveraged for effectively capturing not only input speech contexts but also long-range sequential contexts beyond utterance boundaries. Therefore, this paper proposes a hierarchical transformer-based large-context E2E-ASR model that combines the transformer architecture with hierarchical encoder-decoder based large-context modeling. In addition, in order to enable the proposed model to use long-range sequential contexts, we also propose a large-context knowledge distillation that distills the knowledge from a pre-trained large-context language model in the training phase. We evaluate the effectiveness of the proposed model and proposed training method on Japanese discourse ASR tasks.