2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-21.3
Paper Title ENVIRONMENT-INDEPENDENT WI-FI HUMAN ACTIVITY RECOGNITION WITH ADVERSARIAL NETWORK
Authors Zhengyang Wang, Sheng Chen, Wei Yang, Yang Xu, University of Science and Technology of China, China
SessionMLSP-21: Generative Neural Networks
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Human activity recognition is an essential part of human-computer interaction systems. Environment-robust Wi-Fi-based systems for this task is still a challenging problem, due to the fact that most existing systems may drop in performance when the environment is changed. To address this issue, we in this paper present WiHARAN, a Wi-Fi-based activity recognition system that can learn environment-independent features from Channel State Information (CSI) traces. With a well-designed base network capable of extracting temporal information from spectrograms, we align the joint distribution of features and labels from multiple environments utilizing adversarial learning. Experimental results show that our system achieves better performance than state-of-the-art solutions and can improve performance in difficult environments.